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Abstract—Reliable indoor positioning is an important founda-
tion for emerging indoor location based services. Most existing
indoor positioning proposals rely on a single wireless technology,
e.g., Wi-Fi, Bluetooth, or RFID. A hybrid positioning system
combines such technologies and achieves better positioning ac-
curacy by exploiting the different capabilities of the different
technologies. In a hybrid system based on Wi-Fi and Bluetooth,
the former works as the main infrastructure to enable fingerprint
based positioning, while the latter (via hotspot devices) partitions
the indoor space as well as a large Wi-Fi radio map. As a
result, the Wi-Fi based online position estimation is improved
in a divide-and-conquer manner.
We study three aspects of such a hybrid indoor positioning

system. First, to avoid large positioning errors caused by similar
reference positions that are hard to distinguish, we design a
deployment algorithm that identifies and separates such positions
into different smaller radio maps by deploying Bluetooth hotspots
at particular positions. Second, we design methods that improve
the partition switching that occurs when a user leaves the
detection range of a Bluetooth hotspot. Third, we propose three
architectural options for placement of the computation workload.
We evaluate all proposals using both simulation and walk-
through experiments in two indoor environments of different
sizes. The results show that our proposals are effective and
efficient in achieving very good indoor positioning performance.

I. INTRODUCTION

Indoor spatial awareness attracts increasing attention from

both academia and industry. Providing location based services

(LBS) in indoor spaces is of practical importance as we spend

considerable portions of our daily lives in indoor spaces,

ranging from office buildings to transportation facilities. For

example, an indoor navigation system can guide visitors

through an interesting yet complex exhibition in a museum. As

another example, a location-aware boarding reminder service

in an airport can remind passengers of their flights and

boarding gates so that they do not miss their flights or delay

departures.

Indoor LBSs benefit from the availability of reliable and

low-cost indoor positioning akin to how outdoor LBSs benefit

from reliable and cheap GPS. Sufficiently accurate indoor

positioning can enhance indoor LBSs quality and user ex-

perience. In particular, the availability of low-cost indoor

positioning, which is cheap and easy to deploy and cheap to

operate, has the potential of increase indoor LBS use.

In previous research, much effort has been devoted to

developing indoor positioning systems based on a single

wireless technology. Several types of wireless communication

technologies, notably Wi-Fi [5], [7], [10], Bluetooth [4], [8],

infrared [9], and RFID [12], [19] have been utilized for indoor

positioning. However, each individual such technology has

limitations as a means for supporting indoor positioning.

As Wi-Fi signals diffuse in space and have very large

coverage, a Wi-Fi based indoor positioning system requires the

use of complex additional techniques [7], [10], [15] to improve

positioning accuracy. Next, RFID and Bluetooth based systems

only detect objects when they are within the quite limited

detection range of an RFID reader or a Bluetooth hotspot. Due

to hardware and installation costs, it is typically only feasible

to deploy a limited number of such devices in an indoor space.

As a result, considerable positioning uncertainty is caused

and needs to be properly handled [11]. Finally, infrared based

positioning systems suffer from limitations including low data

rate and strict directionality.

In previous research [6], we propose hybrid indoor position-

ing that employs both Wi-Fi and Bluetooth in one system. In

such a hybrid system, Wi-Fi works as the main infrastructure

to enable fingerprint based positioning, and Bluetooth (via

hotspot devices) partitions the indoor space as well as a

large Wi-Fi radio map. As a result, the Wi-Fi based position

estimation is improved in a divide-and-conquer manner. Also,

such a hybrid system can take advantage of the strengths of

the individual technologies used to achieve better positioning

performance.

Previous research [6] made the following assumptions.

1) Bluetooth hotspots are deployed at pivot reference posi-

tions, e.g., by doors, in an indoor space, and such pivots

are of equal importance with respect to the positioning

effect.

2) When a user leaves a Bluetooth hotspot, one single Wi-

Fi based position estimate, obtained by searching the

corresponding parts of the radio map, is sufficient to

determine the user’s partition.

3) A dedicated server offers online positioning estimation

for mobile clients through a Web service.

This paper lifts these assumptions and significantly extends

this research. First, it is important to be able to determine

which reference positions are really important pivots that may

influence indoor positioning positively if Bluetooth hotspots

are deployed in those positions. This issue becomes more

important when only few Bluetooth hotspots are available.
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Second, a single Wi-Fi based position estimate may not be

sufficient when a user leaves a Bluetooth hotspot. When a

user leaves a hotspot, one radio map part (corresponding to a

partition of the space that results from the particular Bluetooth

hotspot) will be selected and used for subsequent Wi-Fi based

position estimation. If a wrong map part is chosen, subsequent

position estimation suffers very seriously. Therefore, it is

important to improve the selection of map parts.

Third, alternative architecture options should be explored. In

some cases, users may be disconnected from remote servers,

in which case the client-server architecture assumed so far

cannot provide the positioning service. It is then desirable

that the user devices themselves be able to conduct online

position estimation. It is also of interest to compare the energy

consumption of different architecture options.

We make the following contributions.

• We propose an algorithm for selecting pivot positions in

which to deploy Bluetooth hotspots (Section III).

• We provide improved techniques for partition switching

when moving objects leave the ranges of Bluetooth

hotspots and enter into a particular partition (Section IV).

• We develop three different architectures for a hybrid

indoor positioning that differ with respect to power

consumption and coexistence properties of Wi-Fi and

Bluetooth technologies (Section V).

• We conduct extensive experimental studies in real envi-

ronments to test our proposals. The results suggest that

our deployment algorithm is effective, and they profile the

different architecture options with respect to positioning

quality and energy consumption (Section VI).

We review related work in Section II and conclude the paper

in Section VII.

II. RELATED WORK

Among the different existing proposals for indoor position-

ing (e.g., [4], [5], [13], [19]–[22]), Wi-Fi and Bluetooth are

two widely used wireless technologies. We briefly review Wi-

Fi based and Bluetooth based indoor positioning, followed by

hybrid indoor positioning that combines these.

A. Wi-Fi Based Indoor Positioning

Due to the very good space coverage of signals, Wi-Fi

based indoor positioning systems often employs a scene ana-

lysis technique called fingerprinting [15], [16]. Fingerprinting
makes use of Wi-Fi radio signal strengths and consists of an

offline and an online phase. The offline phase always occurs

before the online phase. Specifically, signal strengths from

all n detectable Wi-Fi access points are collected at fixed,

pre-selected indoor reference positions. For each reference

position, a n-dimensional signal strength vector is obtained
as a fingerprint. The fingerprints for all m reference positions

form a database that is called a radio map for the indoor space.
Subsequently, in the online positioning phase, a user’s po-

sition is estimated based on the n-dimensional signal strength
vector that is obtained at the current location. The current

signal strength vector is compared to all the fingerprints in the

radio map, and the reference position with the best matching

fingerprint is returned as the estimated user location.

Two types of methods for online position estimation can

be distinguished: probabilistic methods and deterministic me-

thods [14]. Probabilistic methods make estimates using a

random process that models measurements at all reference

positions. In contrast, deterministic methods compare the

current signal strength vector ssv with all fingerprints in the
radio map in a discrete way. The Nearest Neighbor in Signal

Space (NNSS) method is a typical deterministic method. From

among all reference positions in the radio map, it returns

the one whose fingerprint has the shortest vector distance

to ssv . According to a previous performance study [16],

deterministic methods incur lower computation cost and give

higher positioning accuracy than do probabilistic methods.

B. Bluetooth Based Indoor Positioning

Bluetooth hotspots can be deployed in an indoor space in

order to enable positioning. However, due to the relatively

limited space coverage of Bluetooth hotspots, Bluetooth based

indoor positioning employs proximity analysis for position
estimation [17], [18]. Specifically, the deployed locations of

all Bluetooth hotspots are recorded as reference positions.

When a user holding a Bluetooth-enabled device enters a

particular hotspot’s range, the device identifies the hotspot

(or vice versa), and the corresponding reference position is

returned as the estimate of the user’s position.

It is also possible to use the entire detection range of a

Bluetooth hotspot to approximate a user’s current position.

In that case, when multiple Bluetooth hotspots are seen

simultaneously at a position, the intersection of all hotspot de-

tection ranges is used to approximate the user’s position [11].

However, such techniques are complex because they may

return irregular regions as position estimates, and they involve

expensive geometrical computations.

Although fingerprinting can also be applied to Bluetooth,

it is very expensive to cover an entire indoor space with a

sufficient number of Bluetooth hotspots.

C. Hybrid Indoor Positioning

Wi-Fi base stations have coverage regions that are up to

100 times larger than the region of a Bluetooth hotspot, but

at the expense of energy consumption. Consequently, Wi-Fi

is not suitable for accurately detecting presence of moving

users the way Bluetooth can. Table I gives an non-exhaustive

comparison of Wi-Fi and Bluetooth based indoor positioning.

More details can be found elsewhere [6]. We highlight two

important observations. First, it requires a high infrastructure

investment to cover an entire indoor space with Bluetooth

hotspots, especially when the space is large. Second, the cha-

racteristics of Wi-Fi and Bluetooth enable them to complement

each other in one single, hybrid indoor positioning system.

Such a hybrid system requires that user mobile devices are

equipped with both Wi-Fi and Bluetooth interfaces.

Two approaches have been proposed to combine Wi-Fi and

Bluetooth into one positioning system. One approach is to
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Table I
NON-EXHAUSTIVE COMPARISON OF WI-FI AND BLUETOOTH BASED INDOOR POSITIONING

Wi-Fi Bluetooth
Pros • Widely deployed and available infrastructure

• Good coverage of the indoor space
• Quick signal scanning

• High positioning accuracy
• Simple position estimation
• Low energy consumption

Cons • Highly infrastructure dependent
• Time-consuming radio map creation
• Low positioning accuracy
• Complex position estimation
• High energy consumption

• Extra infrastructure investment
• Extra specific mobile devices
• Slow signal scanning

employ scene analysis for both infrastructures [3]. A combined

radio map is created for both Wi-Fi and Bluetooth signals at

each reference position in the offline phase. Subsequently, the

combined radio map is utilized in the online phase to estimate

user positions. This combined scene analysis approach needs

extra offline fingerprint collection for Bluetooth. Furthermore,

signal interference between Wi-Fi and Bluetooth may affect

the position estimation that uses a combined radio map.

Alternatively, scene analysis and proximity analysis can be

applied to Wi-Fi and Bluetooth, respectively, in one position-

ing system [6]. Given an indoor space with Wi-Fi deployed as

the main wireless infrastructure, a limited number of Bluetooth

hotspots are deployed as add-ons to divide the indoor space

into disjoint partitions. As a result, the original, large radio

map is divided into small ones, each of which corresponds to

an indoor partition induced by the deployment of Bluetooth

hotspots. This approach reduces the computation cost of online

position estimation.

In particular, when a user enters the detection range of a

Blueooth hotspot, as indicated by Bluetooth based proximity

analysis, the user’s position is simply estimated as the hot-

spot’s position without involving signal strengths. After the

user leaves a Bluetooth hotspot, a process called partition
switching is invoked to decide the current possible partition(s)
for the user. Afterwards, the online Wi-Fi based position

estimation only involves the corresponding part(s) of the radio

map. Searching the entire radio map only happens until the

first Bluetooth hotspot is seen by the user device.

III. DEPLOYMENT OF BLUETOOTH HOTSPOTS

A. Motivation

Previous work [6], [11] proposes topological connections

like doors, staircases, and narrow passages as candidate places

for deployment of Bluetooth hotspots. However, such connec-

tions are important to different degrees in an indoor space,

and the specific choices of places to deploy hotspots can

lead to quite different performance of the resulting positioning

system. This motivates us to put focus on selecting the

most appropriate topological connections to deploy a limited

number of available Bluetooth hotspots.

In previous experiments [6], we observed that different

reference positions, although far away from each other, may

share similar Wi-Fi fingerprints. We call such reference po-

sitions resembling reference positions. The NNSS method is
not effective in distinguishing resembling reference positions.

As a consequence, such positions cause an increased error

distance1, especially when they are within the same partition

that corresponds to the same part of the radio map. By

carefully deploying Bluetooth hotspots, we separate resem-

bling reference positions into different partitions, thus dividing

their Wi-Fi fingerprints into different radio map parts. Thus,

subsequent position estimation is less likely to encounter

resembling reference positions, which then improves the posi-

tioning accuracy.

On the other hand, it is desirable that the original radio map

is divided into parts that have similar numbers of reference

positions. Otherwise, the search cost becomes unbalanced

among the different radio map parts when a user is in different

indoor partitions. This then results overall in higher search and

computation costs.

B. Deployment Algorithm

The overall procedure for deploying Bluetooth hotspots

is summarized in Algorithm 1. The algorithm takes three

parameters as input: the original radio map R for the entire

indoor space, the graph g of all reference positions in R,2 and
the number n of available Bluetooth hotspots. The algorithm
employs a while-loop to select n pivots from g for deploying
the n available hotspots. Each selected pivot also partitions the
(sub)graph into two subgraphs. In each iteration, the algorithm

works in three steps as follows.

First, with the help of a max-heap (line 2), the subgraph gi
(initially g) with the largest number of reference positions is
chosen to be partitioned (line 4). For the gi, N Wi-Fi based

position estimates are obtained by simulation or real runs.

Second, the estimated results are evaluated (lines 8–17).

For each wrong estimate, the error distance together with

the true and estimated positions are recorded (lines 8–12).

Subsequently, the average error distance is calculated for each

unique pair of true and estimated positions, and the pair (p1
and p2) that leads to the maximum average error distance is

obtained (lines 13–17).

Third, a balanced partitioning is done (lines 18–31). Spe-

cifically, positions in gi are clustered with respect to p1 and
p2 (lines 18–19). Size based balancing is done if necessary
(lines 20–21). Subsequently, a boundary position is found

for either cluster, and the one with the higher average error

1Error distance [6] denotes the distance between a user’s true position and
the reference position that is returned as the estimated position. It can be
measure as a Euclidean distance or an indoor walking distance. We measure
the latter in the experiments.
2Such a graph is constructed based on the connectivity between reference

positions in the radio map [10].
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distance in the estimate is chosen as the pivot pv (lines 22–27).
Finally, a Bluetooth hotspot is deployed at pv , and the current
subgraph’s radio map is partitioned accordingly (lines 28–31).

Algorithm 1 deployBTHotspots(original radio map R, graph
of reference positions g, number of available Bluetooth hot-
spots n)

1: count← n; R ← {R}
2: initialize a max-heap H; enheap(H, 〈g, |g|〉)
3: while count > 0 do
4: gi ← deheap(H)
5: if |gi| < MIN SIZE then
6: break
7: make N Wi-Fi based position estimates for gi using gi’s

radio map Ri ∈ R � simulation or run in the real setting
// evaluate estimated results

8: results← ∅
9: for each estimated result do
10: if the true position pt �= the estimated position pe

then
11: εj ← the distance between pt and pe

12: add (pt, pe, εj) to results

// get the maximum average error distance and the corres-
ponding pair of reference positions

13: εm ← 0; p1 ← null; p2 ← null;
14: for each unique pair of (pt, pe) in results do
15: get the average error distance εj in results
16: if εj > εm then
17: εm ← εj ; p1 ← pt; p2 ← pt;

// balanced partitioning
18: gi1 ← {p | p ∈ gi ∧ |p, p1| ≤ |p, p2|}
19: gi2 ← {p | p ∈ gi ∧ |p, p2| ≤ |p, p1|}
20: if |gi1|/|gi2| �∈ [0.8, 1.2] then
21: move a corresponding boundary positions from the larger

set to the other set
22: pv1 ← the position in gi1 that is closest to gi2

23: pv2 ← the position in gi2 that is closest to gi1

24: if pv1 has the higher average error distance in the N position
estimates then

25: pv ← pv1; remove pv from gi1

26: else
27: pv ← pv2; remove pv from gi2

// Bluetooth hotspot deployment
28: deploy a Bluetooth hotspot at pv

29: enheap(H, 〈gi1, |gi1|〉); enheap(H, 〈gi2, |gi2|〉)
30: partition radio map Ri accordingly to Ri1 and Ri2

31: R ← (R \ {Ri}) ∪ {Ri1, Ri2}
32: count← count− 1

C. Discussion
Online Wi-Fi based position estimates are made in Algo-

rithm 1 (line 7) to identify resembling reference positions.

Such estimates can be done in simulation using sufficient Wi-

Fi signal strengths that are pre-collected at arbitrary positions

in the indoor space. They can also be run in the real setting.

Alternatively, we can execute online position estimates for a

sufficient number of times at sufficient, arbitrary positions,

upon which we pass the positioning results to Algorithm 1

that in turn makes use of the results to identify resembling

reference positions (lines 8–12). Therefore, the Bluetooth

deployment algorithm provides flexibility to indoor positioning

system builders.

Another issue in Algorithm 1 is that of balanced partitioning

(lines 18–27). We control the size ratio between two subgraphs

to be created (line 20). We set the default ratio to 1.2, which

can be tuned by the algorithm user in practice. The boundary

positions (line 22) refer to those positions that are in gi1, but
are closer to gi2 than others in gi1, and likewise those in
gi2. The proximity is measured as an indoor walking distance
if two reference positions are connected; otherwise, planar

Euclidean distance is used for the sake of simplicity.

IV. ENHANCED PARTITION SWITCHING

It is of high importance in the hybrid positioning approach

that partition switching is correct. This process identifies the

partition of a moving user who is leaving the range of a

Bluetooth hotspot. In previous work [6], the partition switching

worked by always selecting the two partitions adjacent to the

most recently seen Bluetooth hotspot until a Bluetooth hotspot

is seen again.

While this approach is safe, it is preferable to be able to

choose one single partition because this reduces the number of

candidate reference positions to consider in the online Wi-Fi

based position estimation. Put differently, the computation cost

can be reduced by identifying a single partition in the partition

switching. However, the subsequent positioning accuracy is

jeopardized if the single identified partition is incorrect.

We proceed to study how to select one single partition

when a user leaves the range of a Bluetooth hotspot. A naive

approach is to make a single position estimate using one scan

of the Wi-Fi signal once no Bluetooth hotspot is seen. If the

single, estimated position belongs to partition X, only the radio

map part corresponding to X is then used in subsequent Wi-

Fi based position estimation. That means that subsequently

estimated positions can only be among those positions that

are reference positions in partition X.

Partition switching based on a single position estimate is not

reliable due to many reasons. For example, in an environment

where Wi-Fi signals tend to fluctuate and are noisy, random

signal strengths may cause incorrect partition switching. We

thus propose two methods that improve the naive approach.

We argue that increasing the number of estimates can help

select partitions more correctly. Therefore, the two proposed

methods make n (n ≥ 1)3 estimates. Each method scans Wi-
Fi signals, followed by a corresponding position estimate, a

total of n times. It then selects the next partition. The methods
differ in how they make use of the n estimates to select the
next partition. They are both independent of the number of

reference positions.

The frequency method just counts how frequent a reference
position occurs in the n estimates and uses the most frequent
one to select the next partition. Ties are resolved by a random

choice.

Next, the weighted method works as follows. Different

weights are assigned to the n estimates, and the correspon-

3We use a small, odd number for n, as a large n may cause unnecessary
cost. Finding an optimal n is difficult as it involves factors such as user speed,
distance between hotspots, and Wi-Fi scanning time.
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ding partition is decided for each of the n estimates. Then

a weighted score is calculated for each possible partition,

and the partition with the highest score is selected. Suppose

the n estimated positions are p1, p2, . . ., and pn in this

temporal order. We assign weights wi (i ∈ 1, 2, . . . , n) to them
accordingly. Each estimated position ni falls into a particular

partition rj . For each possible partition rj that appears in the
n estimates, we calculate its score according to the following
formula.

score(rj) =

∑
pi∈rj

wi

n
· rj (1)

An example is shown in Table II. Here we have two possible

partitions with identifiers 1 and 2. The score for partition 1 is

(3+4+5)/5·1 = 2.4, and that for partition 2 is (1+2)/5·2 =
1.2. As a result, partition 1 is chosen as the one that contains
the current user position.

Table II
ESTIMATED POSITIONS WITH WEIGHTS

Estimated position (pi) 4 5 6 6 6
Weight (wi) 1 2 3 4 5
Corresponding partition (rj ) 2 2 1 1 1

V. ARCHITECTURE OPTIONS

A. System Architecture Considerations

When designing a hybrid indoor positioning system, special

attention should be paid to the power consumption of hand-

held devices. The simultaneous use of multiple wireless tech-

nologies and online Wi-Fi position estimation can be power-

consuming, which can quickly deplete battery power. Thus,

efficient energy management is of high importance in regard to

usability. In addition, the speed of receiving location estimates

or scan readings can be also crucial while building a reliable

and accurate system.

Other aspects that can shape the architecture of the posi-

tioning system include the coexistence of Bluetooth and Wi-

Fi. In previous work [6], we observed the phenomenon of

inferior Wi-Fi signal perception. More precisely, performing

two scannings simultaneously resulted in Wi-Fi signals being

partially blocked on some devices.

Considerations such as the above render it attractive to

enable several positioning system architectures.

B. Three System Architectures

A hybrid indoor positioning system fundamentally employs

the general client-server architecture. As depicted in Figure 1,

there are four kinds of components in a hybrid indoor posi-

tioning system, namely mobile devices, an application server,

Wi-Fi access points, and Bluetooth hotspots. The server and

mobile devices have separate databases, which are utilized in

different architecture options.

We present three architectures that involve different degrees

of interactions between client and server and also differ in the

workloads delegated to the mobile devices. These options are

listed and explained in Table III.

Bluetooth Hotspot
Mobile Device

Mobile Database

e

Database

Wi-Fi Access Point

Application ServerA

Internet

Figure 1. Architecture components

Table III
ARCHITECTURE OPTIONS

Bluetooth Scanning Online Position Estimation
Thin client Client side Server side
Thick client Client side Client side
Medium client Bluetooth hotspots Client side

In the thick-client architecture, Wi-Fi and Bluetooth scan-
ning are performed on the mobile device. After Wi-Fi readings

are obtained through scanning, online position estimation is

carried out locally on the client. Only an initial interaction

with server is needed to download the database of fingerprints

and an indoor space map to the mobile device.

The thin-client architecture is designed similarly, except that
the online position estimation is done by the server. The client

sends its Wi-Fi readings to the server via the Internet. The

server compares the readings with the radio map and a best

match is returned to the client. Thus, the Wi-Fi based online

position estimation occurs on the server. In this architecture,

we are interested in position estimation delay observed by the

client. This delay is caused by the communication and the

server side computation.

Finally, the medium-client architecture is designed with the
purpose of reducing the interference due to simultaneous Wi-Fi

and Bluetooth scanning. Thus, Bluetooth discovery is moved

to the Bluetooth hotspots. When a hotspot detects a device in

its range, it sends information to the server. To reduce traffic,

the server side database is updated only when a device enters

or leaves the range of a hotspot.

In this architecture, only Wi-Fi scanning and position

estimation occur on the client device. The client acquires

Bluetooth readings from the server’s database when it needs

to. The advantage of this model is its ability to increase the

scanning frequency on the Bluetooth hotspots. Usually, mobile

devices cannot operate with a high frequency of Bluetooth

scanning, which is recommended to be as high as once each

10 or 14 seconds [2]. This architecture decreases client power

consumption.

In all of the architectures, we assume that Bluetooth and Wi-

Fi scanning are performed independently and asynchronously.

In Section VI-D, we evaluate all the architectures with respect

to client side energy consumption, positioning delay, and the

coexistence of Bluetooth and Wi-Fi.
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Figure 2. Indoor environment A
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Figure 3. Indoor environment B

VI. EXPERIMENTAL STUDIES

A. Experimental Setup

We performed experiments in two indoor space environ-

ments. The first one (environment A) is a relatively small

multi-floor apartment building, where each floor occupies

50 m2. Its floor plan is shown in Figure 2. A total of more

than 30 Wi-Fi access points are visible from some floor during

the entire experiment; however, one Wi-Fi scan sees at most

10 access points. We collected fingerprints in 12 different

reference positions that were 3 meters apart on average. The

Wi-Fi signals in this environment are relatively stable due to

the small space.

The second indoor space environment (environment B) is

larger and more complex. It is shown in Figure 3 and is a large

shopping and entertainment center called “Europa.” One floor

in B exceeds 500 m2 and has multiple shop sections. The total

number of Wi-Fi access points in B exceeds 60, but at most 20

are visible in one scan. The Wi-Fi signals in this environment

exhibit more visible fluctuations. We picked 23 reference

positions, and the average distance between two reference

positions is around 10 meters. We did the experiments at the

end of the day when the flow of people in B was low, which

brings about less effects on the wireless signals.

In both environments, we performed 30 to 40 Wi-Fi scans

in each reference position and stored the signal strength

data as radio maps. In the online positioning phase, we

walked through pre-defined routes multiple times. The route

in environment A is 〈1, 3, 5, 7, 9, 10, 9, 7, 11, 16, 11, 12, 15,
12, 13, 14〉, where each number represents a reference posi-
tion, and the route in environment B is 〈24, 23, 15, 16, 18,
21, 18, 16, 15, 14, 12, 10, 6, 7, 8, 7, 6, 5, 4, 3〉. The route in B
excludes other positions that are in relatively huge (sub)spaces.

Experiments in those spaces require too much time to finish.

In the experiments, we used a mobile device running

Android 2.3.1, namely a Samsung Nexus S smartphone with

a 1 GHz ARM Cortex-A8 processor and 512 MB RAM. The

capacity of its standard battery is 1500 mA.
On the server side we used a HP NW8440 PC with an Intel

Core 2 Duo 2.0GHz processor and 3GB RAM. In addition, two

mobile Bluetooth hotspots with detection range of up to 10 me-

ters were used in the experimental environments. Furthermore,

for the medium-client architecture (see Section V), we used an

Asus EEE PC 901 with a few Bluetooth USB dongles to act

as a “smart” Bluetooth hotspots that can communicate with

the server and send data about detected mobile devices. We

wrapped aluminum foil around those dongles to render their

detection ranges comparable to those of the other Bluetooth

hotspots used in the experiments.

B. Experiments on Bluetooth Hotspot Deployment
We first evaluate the Bluetooth hotsopt deployment al-

gorithm (Algorithm 1) in environment A. As indicated in

Figure 2, the algorithm deploys the two hotspots at positions

7 and 12. The manual deployment puts the hotspots at po-

sitions 5 and 11, as they are doorways. For each setting, we

conduct hybrid indoor positioning using the weighted partition

switching method (Section IV). The resulting average error

distance for each reference position is reported in Figure 4.
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Figure 4. Effect of Bluetooth hotspot deployment

For most reference positions, the deployment by Algo-

rithm 1 achieves smaller error distances. In particular, the
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average error distance in the manual deployment is 9.75

meters, while that in the algorithmic deployment setting is

7.57 meters. Therefore, Algorithm 1 is effective in identifying

resembling reference positions and distributing them into dif-

ferent partitions. This way, the Wi-Fi based online positioning

is more accurate.

In environment B, we first deployed two Bluetooth hotspots

at reference positions 10 and 25 (see Figure 6) and got an

average error distance of 4.45 meters. Then we deployed the

hotspots at references positions 5 and 15, and got an average

error distance of 5.99 meters. Finally, we used Algorithm 1,

deploying the hotspots at positions 6 and 15. This resulted

in an average error distance of 2.63 meters. The Bluetooth

hotspot deployment algorithm thus clearly helps improve the

overall indoor positioning accuracy.

C. Experiments on Partition Switching

We tested the two partition switching methods (Section IV)

in both indoor environments.

We report the results of a simulation in environment A in

Figure 5, and we report the results of a real-life walk-through

in environment B in Figure 6. Here, “Hybrid-n” means that n
position estimates are made for switching. We use Hybrid-3

in environment A and Hybrid-5 in environment B, since the

distances between Bluetooth hotspots (and reference positions)

are larger in environment B.

From Figure 5, we see that hybrid indoor positioning

outperforms the pure Wi-Fi positioning in most cases. In

particular, pure Wi-Fi positioning leads to an average error

distance of 3.15 meters across all reference positions, while

Hybrid-1 achieves 2.49 meters and Hybrid-3 with weighted

partition switching achieves 1.75 meters. Thus, the weighted
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Figure 5. Positioning accuracy in environment A

partition switching method reduces the error distance by

approximately 30% and 40%, compared to Hybrid-1 and pure

Wi-Fi, respectively. These results indicate that the weighted

method is very effective in finding the correct partition in the

experiments. Note that in simulation-based experiments, we

see zero error distance in reference positions with Bluetooth

hotspots (positions 7 and 12).

According to the results shown in Figure 6, the performance

of all methods degrades in environment B, where the wireless

signals are considerably less stable due to the flows of people.

In such an environment, the Hybrid-1 method performs the

worst, as one Wi-Fi position estimate is insufficient to switch

to the correct partition, which yields long error distances.

When Bluetooth and Wi-Fi co-exist in a dynamic environment,
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Figure 6. Positioning accuracy in environment B

one Wi-Fi scanning and position estimation faces high fluc-

tuation and instability. We see that significantly improved per-

formance is achieved by the frequency and weighted Hybrid-5

methods. In most cases, weighted partition switching is able

to select the correct partition and thus achieves smaller error

distances.

D. Experiments on Architecture Options

We test the three architectures, namely thin, thick, and

medium client, as presented in Section V. Thick client is the

standard architecture used in all previous experiments, where

Bluetooth and Wi-Fi scanning are performed simultaneously

on the mobile device. In the thin-client architecture, the

online Wi-Fi based position estimation is done on the server

side. The medium-client architecture is an in-between option,

where Bluetooth scanning is performed externally by the

“smart” Bluetooth hotspots. Consequently, Bluetooth-related

data is received from the server by the client device in the

medium-client architecture. We investigate the effects of the

architectures on mobile device power consumption, position

estimation delay, and Bluetooth and Wi-Fi coexistence.

1) Power Consumption: There are two ways to measure
power consumption on a mobile device: using an external

power meter or using a built-in battery sensor. According

to previous research [23], using battery voltage sensor on

an Android phone shows accurate results compared to using

an external power meter. Therefore, we have installed the

Battery Monitor Widget Application [1] on the mobile device

to perform power consumption measurements.

With the help of this application, battery status data was

collected in the background while different architectures were

tested. The logged data includes the date, mA, percentage of

battery left, and mV. Specifically, mA measures the electric

current strength in the device,4 and mV measures the re-

maining voltage of the device’s battery. According to Joule’s

Law and Ohm’s Law, P = V · I . Thus, the electric power
4The absolute value of mA indicates the strength. When the device battery

is discharging due to running applications, mA values are negative. When the
battery is charging, the mA values are positive. Our experiment results show
negative mA values to indicate the amount of energy used by the device.
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consumption is proportional to the voltage V and the cur-

rent I . Therefore, we provide our observations about power
consumption based on the mA and mV values collected during

the tests.

All experiments were conducted for a 2-hour period. The

power consumption measurements were logged every minute,

so that the battery status change can be seen clearly. During

the whole period, the device display was always active, and

other programs were turned off.

For comparison purposes, we also report the power

consumption for the following three settings: Wi-Fi, meaning
that the hand-held devices only activates normal Wi-Fi networ-

king without positioning; BT, meaning that the device only
activates normal Bluetooth connections without positioning;

and None, meaning that the device only activates the display.
As shown in Figure 7, the device consumed the least power

in setting None, which is as expected. Although no scanning
is performed in this setting, the screen display still requires

power to keep running. Due to the different characteristics of

Bluetooth and Wi-Fi, Bluetooth requires the least power. The

difference is also seen in Figure 7, where Bluetooth sometimes

uses 40mA less current than does Wi-Fi.
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Figure 7. mA measurements for settings without indoor positioning

The indoor positioning applications generally consume

more energy as is seen in Figure 8. Overall, the thick-
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Figure 8. mA measurements for settings with indoor positioning

client architecture consumes the most device energy. This is

reasonable as a thick client carries out not only the online

position estimation, but also the Bluetooth scanning. The

energy consumption by the thin client is generally close to

that of the medium client. This is because a thin client is

complementary to a medium client. A thin client scans the

Bluetooth hotspots, but delegates the position estimation to

the server, whereas a medium client delegates the scanning to

the Bluetooth hotspots, but estimates the positions.

To give a more illustrative picture of how the architectures

consume power differently, Figure 9 plots the accumulated

mA values each minute during the 2 hours starting from the

beginning of the 2-hour period. Clearly, the thick client is the

most energy-consuming, which is due to its heavy computation

load and scanning. Further, the medium client uses less energy
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Figure 9. Summed mA for all settings

than the thick client. This is attributed to the extra Bluetooth

scanning done by the thick client.

The remaining mV values of the device, i.e., the voltage

of the device battery, during the 2-hour experiment period

are plotted in Figure 10. From the results, we see that a

thick client dries up the battery the fastest. Nevertheless, the
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Figure 10. mV for all settings

energy consumption trends among the thick client, the medium

client, and a pure Wi-Fi client are very similar. This indicates

that a hybrid indoor positioning system with both Wi-Fi and

Bluetooth consumes energy in a reasonable manner, since it

does not impose significant extra burden to the device battery

compared to a pure Wi-Fi client without positioning.

We also investigate the average battery power consumption

using an online power model for smartphones [23]. This model

estimates the battery power consumption between two given

times t1 and t2 (t2 > t1). In particular, the model measures
the state of discharge (SOD), which is the percentage of the

rated battery energy that has been discharged, at each time.
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As a result, the power consumption is estimated as follows.

P = E ×ΔSOD (2)

Here, E is the battery power capacity, and ΔSOD is the

difference of SOD from t1 to t2.
The battery used in our hand-held device is new, and

its power capacity E is 1500mA. In the 2-hour test, the

Battery Monitor Widget [1] allows us to measure the SODs
for each architecture using the before and after values. We

calculate the estimated average battery power consumption

using Equation 2, and report the results in Table IV.

Table IV
AVERAGE BATTERY POWER CONSUMPTION DURING TWO HOURS

Options ΔSOD1 Consumed Power (mA)
None 19% 285

Bluetooth 24% 360
Wi-Fi 31% 465

Medium client 29% 435
Thin client 32% 480
Thick client 34% 510

Compared to the client without indoor positioning (None),

the pure Wi-Fi client consumes 63% more power, whereas the

thick client consumes 79% more power. Among all hybrid in-

door positioning architectures, the lowest power consumption

is by a medium client that delegates the Bluetooth scanning

to hotspots.

By subtracting 285mA from the power consumption of

Bluetooth and Wi-Fi, we get 75mA and 180mA, respectively.

This suggests that Wi-Fi in general is twice as power-hungry

as Bluetooth. It is also clear that a hybrid indoor positioning

system incorporating both Wi-Fi and Bluetooth does not

necessarily consume more power than a purely Wi-Fi based

system. According to the experimental results, the medium

client actually consumes less power than the pure Wi-Fi client.

Even the thick client that performs all major computations

locally consumes only slightly more power than the pure Wi-

Fi client.

These results show that a hybrid indoor positioning system

is feasible from a power consumption perspective.
2) Positioning Delay: The positioning delay is the time

from when a new position estimate is requested to when that

estimate is available to the user. This delay occurs generally

due to the communication and computation involved in online

positioning. As the positioning delay affects the user expe-

rience more noticeably than the execution time of a positioning

algorithm, we investigate how the delay is affected by the

system architecture and the number of reference positions. For

a thin-client architecture where the positioning is done by the

server, the delay involves network transfer time.

To investigate the causes of the positioning delay, we vary

the number of reference positions from 12 to 62 and obtain

four different radio maps. We compare the positioning delay

between the thin client (server-side position estimation) and

the thick client (client-side position estimation). We perform

100 positioning estimations and report average delays in

Figure 11.
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Figure 11. Online positioning delay

The results support the following observations. Client-side

position estimation is faster when the number of reference

position is not large because the mobile device can handle

all the small radio maps. Server-side position estimation is

advantageous when the number of reference position is large

(42 or higher in the experiment). This indicates that the mobile

device does not cope well with larger radio maps, whereas

the server is capable of fast online position estimation, which

makes network transmission pay off.

For the thin-client architecture, we also investigate how the

number of visible Wi-Fi access points affects the amount of

data that the client sends to the server. The results are reported

in Figure 12. The amount of transmitted data does not reach

1KB even with 9 visible access points. Further, the amount of
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Figure 12. Transmitted data amount from client to server

transmitted data increases in a very moderate, linear fashion as

the number access points increases. These results indicate that

the thin-client architecture is efficient and scalable in terms of

data transmission between client and server.

3) Bluetooth and Wi-Fi Coexistence: In previous re-

search [6], we observed interference between simultaneous

Wi-Fi and Bluetooth scanning on the same device. Here, we

investigate this interference in the different architectures. We

test the five cases listed in Table V. Specifically, case a) is a

pure Wi-Fi client without Bluetooth. Cases b) and c) concern

a medium client for which Bluetooth scanning is done by

the hotspots. In cases e) and f), the client does the Bluetooth

scanning. Also, only in case e), the client device is connected

to a Wi-Fi access point before the test is started. For each

case, we perform 200 to 250 Wi-Fi scans. Figure 13 reports
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the average number of visible access points.

Table V
EXPERIMENTAL CASES

Case Wi-Fi Bluetooth Scanning Bluetooth Distance
a Not connected No Bluetooth –
b Not connected By hotspots 0.3–0.4 meters
c Not connected By hotspots 2–3 meters
d Not connected By client 2–3 meters
e Connected By client 2–3 meters
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Figure 13. Number of visible Wi-Fi access points

One interesting observation concerns the impact of Blue-

tooth scanning performed from different sources. According

to Figure 13, the effect on Wi-Fi visibility is less if Bluetooth

scanning is done by hotspots (cases b) and c)) instead of by

the client (cases d) and e)). More specifically, compared to a

pure Wi-Fi setting (case a)), the Wi-Fi visibility is reduced by

22.72% if the Bluetooth hotspots are within 0.3–0.4 meters

from the client (case b)). The Wi-Fi visibility is reduce only

by 7.47% if the hotspots are further away (case c)).

The worst result is seen in case d), where fewer than 2

Wi-Fi access points are detected. When the Wi-Fi scanning

is initiated from a cold start on a device, the sensitivity to

simultaneous Bluetooth scanning on the device is the highest.

The situation is improved when the Wi-Fi scanning is initiated

beforehand, as indicated by the result for case e).

VII. CONCLUSION

We propose techniques that improve hybrid indoor posi-

tioning that uses both Wi-Fi and Bluetooth. We propose an

algorithm that identifies locations in which to deploy a limited

number of Bluetooth hotspots in order to achieve the best

positioning. We design methods that improve the partition

switching that occurs when a user leaves the detection range

of a Bluetooth hotspot. In addition, we also present three

architectures for a hybrid indoor positioning system that serve

different user needs and user hardware constraints.

We conduct extensive experiments in real settings to eva-

luate our proposals. The results show that the Bluetooth

deployment algorithm is effective and contributes to better

positioning accuracy when compared to manual deployment.

The results also show that the new partition switching methods

work better than the straightforward method for finding the

correct indoor partition, and thus the corresponding smaller ra-

dio map. In addition, the results profile the three architectures

with respect to device energy consumption and positioning

quality. The results verify that hybrid indoor positioning is

energy efficient and effective in returning accurate estimated

positions.
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